sábado, 2 de setembro de 2017

Células e Tecidos do Sistema Imune

Fonte: Livro Imunologia Celular e Molecular - 8ª Ed.
Autores: Abul Lichtman, Andrew Abbas 

As células do sistema imune inato e adaptativo normalmente estão presentes como células circulantes no sangue e na linfa, como coleções anatomicamente definidas nos órgãos linfoides e como células dispersas em praticamente todos os tecidos. A organização anatômica destas células e sua habilidade em circular e trocar entre sangue, linfa e tecidos são de importância crucial para a geração de respostas imunes. O sistema imune enfrenta numerosos desafios para gerar respostas protetoras efetivas contra patógenos infecciosos. Primeiro, o sistema deve ser capaz de responder rapidamente a pequeno número de muitos microrganismos diferentes que podem ser introduzidos em qualquer local do corpo. Segundo, na resposta imune adaptativa, muito poucos linfócitos imaturos reconhecem especificamente e respondem a qualquer antígeno. Terceiro, os mecanismos efetores do sistema imune adaptativo (anticorpos e células T efetoras) podem ter que localizar e destruir microrganismos em locais que são distantes da região onde a resposta imune foi induzida. A habilidade do sistema imune em encontrar esses desafios e realizar otimamente suas funções protetoras é dependente de respostas rápidas e extremamente variadas das células imunes e da maneira pela qual essas células são organizadas nos tecidos linfoides e ainda são capazes de migrar de um tecido para outro.

Células do sistema imune

As células que servem a papéis especializados nas respostas imunes inata e adaptativa incluem fagócitos, células dendríticas, linfócitos específicos para antígeno e vários outros leucócitos que agem para eliminar os antígenos.



Tabela 2-1
Contagens Normais de Células Sanguíneas 
 

 Fagócitos

 Os fagócitos, incluindo neutrófilos e macrófagos, são as células cuja função primária é ingerir e destruir microrganismos e se livrar dos tecidos danificados. As respostas funcionais dos fagócitos na defesa do hospedeiro consistem em passos sequenciais: recrutamento das células para locais de infecção, reconhecimento e ativação pelos microrganismos, ingestão dos microrganismos por processo de fagocitose e destruição dos microrganismos ingeridos. Além disso, pelo contato direto e pela secreção de citocinas, os fagócitos se comunicam com outras células de modo a promover ou regular as respostas imunes. Essas funções dos fagócitos são importantes na imunidade inata e também na fase efetora de algumas respostas imunes adaptativas.

Neutrófilos 

Os neutrófilos, também chamados de leucócitos polimorfonucleares, constituem a população mais abundante de células brancas sanguíneas circulantes e medeiam as fases iniciais das reações inflamatórias. Os neutrófilos circulam como células esféricas de aproximadamente 12 a 15 μm de diâmetro com numerosas projeções membranosas. O núcleo de um neutrófilo é segmentado em três a cinco lóbulos conectados, por isso o sinônimo de leucócito polimorfonuclear (Fig. 2-1, A). O citoplasma contém grânulos de dois tipos. A maioria, chamada de grânulos específicos, é preenchida com enzimas tais como lisozima, colagenase e elastase. Estes grânulos não coram fortemente nem com corantes básicos nem com corantes acídicos (hematoxilina e eosina, respectivamente), que distinguem os grânulos dos neutrófilos daqueles de dois outros tipos de granulócitos circulantes, chamados de basófilos e eosinófilos.

O restante dos grânulos dos neutrófilos, denominados grânulos aurofílicos, consiste em lisossomas que contêm enzimas e outras substâncias microbicidas, incluindo defensinas e catelicidinas. Os neutrófilos são produzidos na medula óssea e surgem de precursores que também dão origem a fagócitos mononucleares. A produção dos neutrófilos é estimulada pelo fator estimulador de colônias (G-CSF). Um humano adulto produz mais de 1 × 1011 neutrófilos por dia, cada qual circulando no sangue por horas ou poucos dias. Os neutrófilos podem migrar rapidamente para locais de infecção após a entrada de microrganismos. Após a entrada nos tecidos, os neutrófilos funcionam por somente 1 a 2 dias e, então, morrem.




FIGURA 2-1 Morfologia dos neutrófilos, macrófagos, basófilos e eosinófilos.

A, Uma micrografia de luz de neutrófilos sanguíneos corados com Wright-Giemsa mostra os núcleos multilobados, motivo pelo qual essas células também são denominadas leucócitos polimorfonucleares, e os grânulos citoplasmáticos fracos. B, Uma microscopia de luz de uma seção de pele corada com Wright-Giemsa mostra um mastócito (seta) adjacente a um pequeno vaso sanguíneo, identificável pela hemácia na luz. Os grânulos citoplasmáticos no mastócito, que são corados de roxo, são cheios de histamina e outros mediadores que agem nos vasos sanguíneos adjacentes para promover o aumento no fluxo sanguíneo e a distribuição de proteínas plasmáticas e leucócitos para os tecidos. (Cortesia de Dr. George Murphy, Department of Pathology, Brigham and Womens’s Hospital, Boston, Massachusetts.) C, Uma micrografia de luz de um basófilo sanguíneo corado com Wright-Giemsa mostra os característicos grânulos citoplasmáticos corados de azul. (Cortesia de Dr. Jonathan Hecht, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts.) D, Uma micrografia de luz de um eosinófilo sanguíneo corado com Wright-Giemsa mostra os característicos núcleos segmentados e grânulos citoplasmáticos corados de vermelho

Fagócitos Mononucleares

 O sistema fagócito mononuclear inclui as células circulantes denominadas monócitos e células residentes teciduais denominadas macrófagos. Os macrófagos, que são amplamente distribuídos nos órgãos e tecido conectivo, têm papel central na imunidade inata e adaptativa. Muitos tecidos são povoados com macrófagos residentes com vida longa e derivados do saco vitelino ou precursores hepáticos fetais durante o desenvolvimento fetal que assumem fenótipos especializados dependendo do órgão (Fig. 2-2). Exemplos são as células de Kupffer que recobrem os sinusoides no fígado, macrófagos sinusoides no baço, macrófagos alveolares nos pulmões e células da microglia no cérebro. Nos adultos, as células da linhagem de macrófago surgem a partir de células precursoras na medula óssea, direcionadas por uma proteína denominada fator estimulador de colônia de monócito (ou macrófago) (M-CSF). Esses precursores evoluem para monócitos, que entram e circulam no sangue (Fig. 2-2) e, então, migram para os tecidos, especialmente durante as reações inflamatórias, onde eles então amadurecem em macrófagos.



FIGURA 2-2 Maturação dos fagócitos mononucleares.

Macrófagos residentes teciduais, que se diferenciam em formas especializadas em órgãos particulares, são derivados de precursores no saco vitelino e fígado fetal durante a vida fetal. Os monócitos se originam de uma célula precursora de linhagem mieloide na medula óssea, circulam no sangue e são recrutados para os tecidos em reações inflamatórias, onde eles amadurecem em macrófagos. Existem subgrupos de monócitos sanguíneos que têm funções inflamatórias ou reparadoras (não mostradas) distintas.

Os monócitos têm entre 10 a 15 μm em diâmetro e apresentam um núcleo em formato de feijão com citoplasma finamente granular contendo lisossomas, vacúolos fagocíticos e filamentos de citoesqueleto (Fig. 2-3). Os monócitos são heterogêneos e consistem em diferentes subgrupos distinguíveis pelos marcadores de superfície celular e funções. Em ambos humanos e camundongos, os monócitos mais numerosos, algumas vezes denominados monócitos clássicos, produzem abundantes mediadores inflamatórios e são rapidamente recrutados para locais de infecção e tecido danificado. Em humanos, esses monócitos são identificáveis pela alta expressão na superfície celular de CD14 e não têm a expressão de CD16 (CD14++CD16); em camundongos, o subgrupo equivalente é identificável como Ly6alto. Os monócitos não clássicos, que constituem a minoria dos monócitos sanguíneos, são CD14+CD16++ em humanos e Ly6cbaixo em camundongos. Estas células contribuem para o reparo tecidual após a lesão e são conhecidas por rolar ao longo das superfícies endoteliais (descrito como patrulhamento). Um subgrupo humano intermediário também foi descrito (CD14++CD16+).

FIGURA 2-3 Morfologia dos fagócitos mononucleares.

A, Micrografia de luz de um monócito em um esfregaço de sangue periférico. B, Micrografia eletrônica de um monócito de sangue periférico. (Cortesia de Dr. Noel Weidner, Department of Pathology, University of California, San Diego.) C, Micrografia eletrônica de um macrófago tecidual ativado mostrando numerosos vacúolos fagocíticos e organelas citoplasmáticas. (De Fawcett DW: Bloom and Fawcett: a textb ook of histology, 12th ed, New York, 1994, Chapman & Hall. Com permissão de Springer Science and Business Media.)

Estes macrófagos teciduais realizam várias funções importantes na imunidade inata e adaptativa.

• A principal função dos macrófagos na defesa do hospedeiro é ingerir e matar microrganismos. Os mecanismos de morte incluem a geração enzimática de espécies reativas de oxigênio e nitrogênio que são tóxicas aos microrganismos e digestão proteolítica.
• Em adição aos microrganismos ingeridos, os macrófagos também ingerem células mortas do hospedeiro, incluindo células que morrem nos tecidos por causa de trauma ou suprimento sanguíneo interrompido e neutrófilos que se acumulam nos locais de infecção. Esta é a parte do processo de limpeza após a infecção ou lesão tecidual. Os macrófagos também reconhecem e engolfam células apoptóticas antes que as células mortas possam liberar seus conteúdos e induzir respostas inflamatórias. Em todo o corpo e durante toda a vida de um indivíduo, as células indesejadas morrem por apoptose como parte de muitos processos fisiológicos, tais como desenvolvimento, crescimento e renovação dos tecidos saudáveis, e as células mortas são eliminadas pelos macrófagos.
• Macrófagos ativados secretam várias citocinas diferentes que agem nas células endoteliais que recobrem os vasos sanguíneos para aumentar o recrutamento de mais monócitos e outros leucócitos do sangue para os locais de infecções, amplificando, assim, a resposta protetora contra os microrganismos.
• Macrófagos servem como APCs que apresentam antígenos e ativam os linfócitos T. Esta função é importante na fase efetora das respostas imunes mediadas por células T.
• Macrófagos promovem o reparo de tecidos danificados pela estimulação do crescimento de novos vasos sanguíneos (angiogênese) e síntese de matriz extracelular rica em colágeno (fibrose). Estas funções são mediadas por citocinas secretadas pelos macrófagos que agem em várias células teciduais.
Os macrófagos são ativados para realizar suas funções por meio do reconhecimento de muitos tipos diferentes de moléculas microbianas, bem como moléculas do hospedeiro produzidas em resposta a infecções e lesão. Estas várias moléculas ativadoras se ligam a receptores de sinalização específicos localizados na superfície ou dentro do macrófago. Exemplos destes receptores são os receptores do tipo Toll, que são de importância central na imunidade inata . Os macrófagos também são ativados quando receptores em suas membranas plasmáticas ligam a opsoninas na superfície dos microrganismos. As opsoninas são substâncias que recobrem partículas para a fagocitose. Exemplos de receptores para opsoninas são os receptores do complemento e os receptores para anticorpo Fc. Na imunidade adaptativa, os macrófagos são ativados pelas citocinas secretadas e por proteínas de membrana nos linfócitos T.
Os macrófagos podem adquirir capacidades funcionais distintas, dependendo dos tipos de estímulos ativadores aos quais são expostos.O exemplo mais claro disto é a resposta dos macrófagos a diferentes citocinas produzidas pelos subgrupos de células T. Algumas destas citocinas ativam macrófagos para estes se tornarem eficientes em matar microrganismos, o que é chamado de ativação clássica. Outras citocinas ativam os macrófagos para promover o remodelamento e reparo tecidual, o que se denomina ativação alternativa. Essas diferentes vias de ativação e as citocinas envolvidas também podem assumir diferentes formas morfológicas após a ativação por estímulos externos, tais como microrganismos. Alguns desenvolvem um citoplasma abundante e são chamados de células epitelioides porque são semelhantes às células epiteliais da pele. Os macrófagos ativados podem se fundir para formar células gigantes multinucleadas.
Os macrófagos respondem tipicamente aos microrganismos mais próximos tão rapidamente quando os neutrófilos o fazem, mas os macrófagos sobrevivem por muito mais tempo nos locais de inflamação. Diferentemente dos neutrófilos, os macrófagos não são terminalmente diferenciados e podem sofrer divisão celular nos locais de inflamação. Dessa maneira, os macrófagos são as células efetoras dominantes dos estágios finais na resposta imune inata, vários dias após uma infecção se iniciar.

Nenhum comentário:

Postar um comentário